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Abstract. Long range multiplicity–multiplicity, p2
T–multiplicity and p2

T–p2
T correlations are studied in the

percolating color string picture under different assumptions of the dynamics of the string interaction. It is
found that the strength of these correlations is rather insensitive to these assumptions; nor is it sensitive to
the geometry of the fused string clusters that formed, the percolation phase transition in particular. Both
multiplicity–multiplicity and p2

T–multiplicity correlations are found to scale and depend only on the string
density. p2

T–multiplicity correlations, which are absent in the independent string picture, are found to be
of the order of 10% for central heavy ion collisions and can serve as a clear signature of string fusion. In
contrast p2

T–p2
T correlations turned out to be inversely proportional to the number of strings and therefore

to be very small for realistic collisions.

1 Introduction

The standard description of particle production in soft
high-energy strong interactions is in terms of color strings
stretched between the participant hadrons, whose decay
generates the observed particle spectrum. The number of
strings grows with energy and atomic number of partici-
pants and reaches thousands in heavy ion collision at RHIC
and LHC energies. With their density high enough, one ex-
pects that the strings begin to overlap and interact. Some
time ago a scenario of this interaction was introduced based
on the percolation phase transition and the existence of
color strings of high color [1]. An immediate consequence
of the percolating string scenario is damping of the multi-
plicity and rising of the average transverse momentum as
compared to the independent string picture. These conse-
quences are in agreement with the first data obtained at
RHIC [2]. It is to be stressed that within the percolating
string scenario one may imagine different versions of the
string interaction dynamics. Overlapping strings may not
interact at all. Then the consequence of overlapping will be
just formation of different spots in the interaction area with
higher color content corresponding to the sum of colors of
the overlapping strings. These spots will generally act as in-
dependent particle emitters (“overlaps”, or “ministrings”).
The number of ministrings will generally be much greater
than that of the initial strings. So in this scenario percola-
tion and fusion of strings actually leads to a proliferation
of particle emitters. An opposite scenario with a lot of in-
teraction of overlapping strings assumes that their color

becomes homogeneously distributed over the formed clus-
ter, the latter as a whole becoming an independent particle
emitter. In this scenario the number of particle emitters
is evidently smaller than the number of initial strings and
may become unity if all strings form a single cluster. It is
remarkable that these two scenarios actually lead to prac-
tically the same predictions for such global quantities as
the multiplicity and average transverse momentum. So, to
distinguish between them, one has to study more detailed
information of the particle spectra. Immediate candidates
are the long range correlations between multiplicities or
multiplicities and average transverse momentum. In this
note we study these observables in both discussed scenarios
of the string interaction. Our results show that unfortu-
nately these long range correlations are not very sensitive
to the choice of string dynamics either. In fact, we find that
they are also rather insensitive to the geometric picture of
the string fusion and to the percolation phase transition
which occurs at high enough string density.

However, there is one advantage of studying the long
range correlations involving the average transverse mo-
menta: these correlations are absent in the independent
string model. So their presence is a clear signature of string
fusion and appearance of spots with higher color density
than on the average. As we shall see, the correlations be-
tween the transverse momentum and multiplicity are of
especial value, since they depend only on the string den-
sity and not on the total number of strings. Long range
correlations between transverse momenta, on the contrary,
are inversely proportional to the total number of strings
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and so are practically absent in central heavy ion colli-
sions. They can only be expected to be visible in highly
peripheral collisions or collisions involving light nuclei.

Some comments are to be made to explain the appli-
cation of the color string approach to correlations. First
we shall study long range correlations, which correspond
to choosing the correlating observables from different ra-
pidity windows separated by a reasonably large rapidity
interval. This is to exclude short range correlations which
are always present and appear both at the string decay
stage (internal correlations of string particle production)
and final hadronization stage (resonance decays). Second,
in the study of average transverse momentum we assume
the chosen rapidity windows to exclude the fragmentation
regions, where the correlations between the average trans-
verse momentum and multiplicities may largely be a result
of summing the transverse momenta of the parent partons
from the colliding hadrons. In fact the latter explanation is
the standard one for the observed correlations [3]. However
it does not apply to the central region, in which particle
production becomes insensitive to the parent parton mo-
menta. So, hopefully the correlations in the central region
result only due to string interactions. Finally we have to
remember that the unperturbative color string picture is
mostly oriented to soft particle spectra. Therefore, strictly
speaking, our region of average transverse momenta should
be limited by values of the order of 1÷2 GeV/c. Neverthe-
less one may try to include also the lower part of the hard
spectrum into the string mechanism of particle production,
choosing the pT distribution for a single string appropri-
ately. Clustering of strings then suppresses the high pT
distributions in central heavy ion collisions in agreement
with the RHIC data [2]. This seems to support the appli-
cability of the string picture up to values of pT of the order
8 ÷ 10 GeV/c.

2 General formalism

In this subsection we shall present our basic probabilistic
expressions for the correlations valid for any scenario of
string interaction.

In a given event color strings occupy certain regions in
the transverse interaction plane and may overlap forming
clusters. In any scenario this generates independent emit-
ters, either overlaps or clusters as a whole. We enumerate
these emitters by the subindex α = 1, 2, 3, . . . , M , where
M is the total number of emitters.

An event consists of the emission of mα particles from
emitter α. The total number of emitted particles is

me =
∑
α

mα . (1)

The pT distribution of particles emitted from emitter α
will be given by a certain function wα(p). Note that it
corresponds to the average

p2
α =

∫
d2pp2wα(p) , (2)

whose concrete value depends of the scenario for the in-
teraction. The effective pT distribution in a given event
is then

we(p) =
1

me

∑
α

mαwα(p) , (3)

and the average p2
T is

p2
e =

1
me

∑
α

mαp2
α . (4)

Now we pass to taking averages over many events. This
averaging may be divided in two steps. First we average
over various events occurring with the same string geom-
etry, that is, with the fixed overlap and cluster structure
(“configuration”). Then we have to average over all possi-
ble configurations.

To average over events at a fixed configuration we have
to know the probability ρα(m) for a given emitter to pro-
duce m particles. This probability has to lead to the average
number of particles

m̄α =
∑
m

mρα(m) , (5)

which again is to be taken according to the chosen scenario
of the string interaction. We get averages in a given con-
figuration:

m̄c =
∑

{mα}

∏
α

ρα(mα)me =
∑
α

m̄α , (6)

p̄2
c =

∑
{mα}

∏
α

ρα(mα)
1

me

∑
α

mαp2
α (7)

and also the probabilities in a given configuration to emit
m particles

ρc(m) =
∑

{mα}

∏
α

ρα(mα)δm,
∑

α mα
(8)

and a particle with the transverse momentum p

wc(p) =
∑

{mα}

∏
α

ρα(mα)
∑

α mαwα(p)∑
α mα

. (9)

To study correlations we have to know double distribu-
tions. As mentioned in the introduction, we assume that the
forward and backward rapidity windows are separated by a
rapidity gap of sufficient length to exclude short range cor-
relations. Then emissions into the forward and backward
rapidity windows can be considered to be independent. As
a result the double distribution in the numbers of particles
mF and mB emitted in the forward and backward rapidity
windows in a given configuration factorizes:

ρc(mF, mB) = ρF
c (mF)ρB

c (mB) , (10)

where the ρF,B
c (m) are given by (8) with emitter proba-

bilities ρF,B
α (m) to produce particles in the forward (F)
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or backward (B) rapidity windows. Similarly the double
distribution in the number of particles mF in the forward
rapidity window and the particle transverse momentum pB
in the backward rapidity window in a given configuration
is a product:

ρc(mF, pB) = ρF
c (mF)wB

c (pB) . (11)

Here wB(p) is given by (9) with ρα → ρB
α . Finally, the dou-

ble distribution in the momenta pF and pB of the particles
emitted in the forward and backward rapidity windows
factorizes as follows:

wc(pF, pB) = wF
c (pF)wB

c (pB) . (12)

To average over different configurations we have to sum
these expressions over all configurations with the weight
Pc, which is the probability of a given configuration. We
denote this operation as 〈 〉. In particular we find vari-
ous conditional probabilities of interest. The conditional
probability to find mB particles in the backward rapid-
ity window provided one sees mF particles in the forward
rapidity window is

〈ρ(mB)〉mF =
〈ρc(mF, mB)〉

〈ρF
c (mF)〉 . (13)

The conditional probability to find a particle with trans-
verse momentum pB in the backward rapidity window pro-
vided one sees mF particles in the forward rapidity win-
dow is

〈w(pB)〉mF =
〈ρc(mF, pB)〉

〈ρF
c (mF)〉 . (14)

Finally, the conditional probability to find a particle with
momentum pB in the backward rapidity window provided
one sees a particle with momentum pF in the forward ra-
pidity window is

〈w(pB)〉pF =
〈wc(pF, pB)〉

〈wF
c (pF)〉 . (15)

Taking the averages with these probabilities we find our
basic formulas for the correlations. The average multiplicity
in the backward window at a given multiplicity in the
forward window is

〈mB〉mF =
〈(m̄B)cρ

F
c (mF)〉

〈ρF
c (mF)〉 , (16)

where (m̄B)c and ρF
c (mF) are given by (6) and (8) for the

two rapidity windows. The average transverse momentum
squared in some rapidity window at a given multiplicity in
a different rapidity window is

〈pB
2〉mF =

〈( ¯pB
2)cρ

F
c (mF)〉

〈ρF
c (mF)〉 , (17)

where ( ¯pB
2)c is given by (7) with ρα → ρB

α . Finally, the
average transverse momentum squared in some rapidity

window at a given momentum in a different rapidity win-
dow is

〈pB
2〉pF =

〈( ¯pB
2)cw

F
c (pF)〉

〈wF
c (pF)〉 , (18)

where wF
c is given by (9) with ρα → ρF

α. These formulas
serve as a starting point for our study.

The expressions for the correlations can be substan-
tially simplified if the emission probabilities ρα(m) have
the Poisson form

ρα(m) = Pm̄α
(m) = e−m̄α

m̄m
α

m!
. (19)

Then taking the average in a given configuration can be
done analytically.

In particular we find with (19) (see Appendix A)

ρc(m) = Pm̄c(m) = e−m̄c
m̄m

c

m!
, (20)

p̄2
c =

1
m̄c

∑
α

m̄αp2
α (21)

and

wc(p) =
1

m̄c

∑
α

m̄αwα(p) . (22)

For particles emitted in the forward (backward) rapidity
windows one has to substitute in these formulas m̄ → m̄F,B

With this simplification, calculation of the correlations
reduces to taking the averages only over configurations.

3 Multiplicity correlations

Forward–backward (FB) correlations between multiplic-
ities have since long ago been studied both experimen-
tally [4] and theoretically [5–7]. On the theoretical level
they demonstrate that the number of elementary emitters
fluctuates. On this ground they have served as a confirma-
tion of the color string picture, showing that the number
of strings fluctuates, with its average growing with energy.
For the FB multiplicity correlations to exist, the inter-
action between strings is irrelevant: the correlations are
fully present when strings are independent. Moreover, as
conjectured in [8], interaction and fusion of strings lead
to damping of these correlations, since the effective num-
ber of strings diminishes. As we shall see, this conjecture
is confirmed by calculations using (16) in any of the two
scenarios for the string interaction.

3.1 Ministrings as emitters

As mentioned in the Introduction the two scenarios differ
in the intensity of the interaction between the overlapping
strings. The ministring scenario assumes that this interac-
tion is in fact absent: the overlap regions retain their form
and serve as independent emitters of particle with charac-
teristics determined by the total color accumulated in the
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overlap. In this scenario different emitters can be labeled
by two numbers α = {ni} where i = 1, 2, . . . enumerates
the overlaps of n strings. The basic quantity which charac-
terizes the ministring scenario is the average multiplicity
of overlap {ni} [1, 8]:

m̄ni = µ0
√

n
Sni

σ0
. (23)

Here Sni and σ0 are transverse areas of the overlap and
initial string, respectively. Using (6) we obtain the average
multiplicity in a given configuration as

m̄c = µ0

∑
n

√
n

Sn

σ0
, (24)

where Sn =
∑

i Sni is the total area in which n strings
overlap, and µ0 is the average multiplicity for the initial
string. The average multiplicities in the forward and back-
ward rapidity windows are given by the same formula with
µ0 → µF,B

0 , the forward and backward multiplicities for the
initial string:

m̄F,B
c = µF,B

0

∑
n

√
n

Sn

σ0
. (25)

Putting (25) into (20) and using (16) we reduce the calcu-
lation of the FB multiplicity correlations to averaging over
the overlap geometries of the known expression depending
on Sn. This averaging involves, first, different ways in which
string overlap with their total N number fixed and, second,
different values of N distributed around a certain average
value 〈N〉 determined by the energy and atomic number
of participants. At large 〈N〉 and small σ0 as compared to
the total interaction area S one expects a scaling behav-
ior: appropriately chosen characteristics of the correlations
depend only on the dimensionless percolation parameter

η =
〈N〉σ0

S
. (26)

This property allows one to study the correlations by Monte
Carlo simulations with comparatively low values of 〈N〉.
Values of η and 〈N〉 for S–S and Pb–Pb central collisions
at different energies obtained by Monte Carlo simulations
based on the fusing color string model [1] are shown in
Table 11. We have taken σ0 = πr2

0 with r0 = 0.2 fm and S =
πR2

A, which corresponds to central collisions (b = 0). Note
that η defined by (26) is just a parameter describing the
overall averages. In different events the number of particles
fluctuates and so does the string density. One then may
introduce ηe for a given event. However it is remarkable that
the final averages as a result are found to be dependent
only on the average η. In our numerical calculations we
studied the quantity

Fµ−µ =
〈mB〉mF

〈mB〉 − 1 (27)

1 These values are somewhat different from the ones previ-
ously used in [8], where they were computed from the naive
Glauber–Gribov approach, in the optical approximation for AA
collisions and without taking into account energy-momentum
conservation.

Table 1. Values of η and average number of strings 〈N〉 for
central S–S and Pb–Pb collisions at different energies

S–S scattering (b = 0)
√

s η 〈N〉
19.4 0.40 126
62.5 0.52 164

200 0.65 204
546 0.80 252

1800 0.97 308
5500 1.19 378

Pb–Pb scattering (b = 0)
√

s η 〈N〉
19.4 1.08 1190
62.5 1.39 1536

200.0 1.60 1800
546.0 2.03 2240

1800.0 2.46 2720
5500.0 3.01 3329

as a function of
x =

mF

〈mF〉 . (28)

In our simulations we used both the homogeneous distri-
bution of strings in the transverse interaction area and the
inhomogeneous one, which follows the nuclear profile func-
tion T (b). No significant qualitative difference was found
between these two choices. For simplicity we present here
our results for the homogeneous distribution. We chose
µF,B

0 = 1. We used the Poisson distribution in the number
of strings N with 〈N〉 = 25 and 50. We have checked that
the results are practically independent of 〈N〉 in the region
0.3 < x < 3, so that Fµ−µ(x) exhibits the expected scaling
behavior for physically relevant values of mF.

Our results for values of η = 0.5 ÷ 3 show that in the
whole interval 0 < x < 3 the Fµ−µ(x) is a monotonically
rising function of x, rather close to linear and crossing
zero at x = 1. Its slope at x = 1 (and 〈N〉 = 50) (the
“correlation coefficient”)

bµ−µ =
(

dFµ−µ(x)
dx

)
x=1

is shown in Fig. 1 by a solid line. As we observe, it steadily
falls with η, in full accordance with the idea that the cor-
relations are diminished as a consequence of string fusion.
At very high η the slope seems to flatten around 0.1. At
η → 0 the slope tends to the value 0.5, which corresponds
to the independent string model with the assumed value
of µ0 (see Appendix B). Note that η ∼ 1.12 corresponds
to the critical value for the percolation phase transition
for the homogeneous distribution of strings (see [9] for the
inhomogeneous case).

However, our curves do not show any peculiarity at
such values of η.

In Fig. 2 we compare bµ−µ for the homogeneous dis-
tribution of strings and the inhomogeneous one which fol-
lows the nuclear profile function T (b) ∝ √

R2
A − b2 (cor-

responding to a constant nuclear density). As mentioned,
the difference is of no practical importance.

One may wonder why in the ministring case, with the
proliferation of individual emitters, the multiplicity corre-
lations are diminished, contrary to the common belief that
they grow with the number of emitters [3]. The reason is
that for multiplicities the effective emitters are not indi-
vidual ministrings but rather the whole set of them with a
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given number of overlaps. This is clearly seen from (24) in
which only the total area Sn enters and not the individual
areas Sni. Thus, for multiplicities all ministrings with a
given overlap act coherently, as a single effective emitter.
The number of these effective emitters is in fact diminished
as compared to the non-interacting string case.

At η → 0 the slope tends to its maximal value, which,
as mentioned, corresponds to the independent string pic-
ture. In this case the FB correlations are wholly due to
fluctuations in the total number of strings. This has to
be taken into account when comparing our present results
with some previous ones, where the total number of strings
was fixed and as a consequence the slopes bµ−µ vanished
at small η [8].

3.2 Clusters as emitters

An alternative scenario with a strong interaction between
overlapping strings assumes that the color becomes homo-
geneously distributed over the whole cluster formed by the
overlapping strings. The emitters are now clusters them-
selves and the index α now labels just different clusters.
The average multiplicity of a cluster is chosen to adjust to
the color distribution [10]:

m̄α = µ0

√
nαSα

σ0
, (29)

where nα and Sα are the number of strings and the area
of cluster α. For the forward and backward rapidity win-
dow (29) transforms into

m̄F,B
α = µF,B

0

√
nαSα

σ0
. (30)

Equations (29) and (30) express the physical contents of
the cluster scenario for multiplicity correlations and their
difference from (24) and (25) shows the effect of the strong
interaction between overlapping strings. The remaining
procedure to calculate the correlations does not change
as compared to the ministring case.

We calculated the same function Fµ−µ(x) (see (27))
with (29) by Monte Carlo simulations. Comparison of our
results for 〈N〉 = 25 and 50 again showed a satisfactory
scaling in 〈N〉 for x = 0.3 ÷ 3 and a weak dependence on
the way the strings are distributed in the interaction area.
In spite of a very different dynamics, we have found no
appreciable difference with the former case of overlaps as
emitters. The slopes bµ−µ of Fµ−µ(x) at x = 1 are shown in
Fig. 1 by a long-dashed line (again for 〈N〉 = 50). They are
systematically higher than for overlaps but the difference
does not exceed 10%, which is of no practical importance,
taking into account simplifications involved at the basis of
the model.

3.3 Fixed number of emitters

Technically taking the average over all geometrical distri-
butions of strings in the transverse area is a formidable

task, which can be realistically achieved by Monte Carlo
simulations for a reasonable time only for a limited num-
ber of strings, substantially smaller than this number in
heavy ion collisions at RHIC and especially LHC energies.
On the other hand, it is well known that different ways of
averaging often lead to the same or practically the same
averages, since the physical picture of fluctuating variables
is often basically the same. This motivates our searching
for a simplified picture of string fusion, which, on the one
hand, is not very different from the one discussed above
by its physical implications and, on the other hand, avoids
geometrical averaging. In this subsection we propose such
a picture.

Physically the basis of the string fusion model con-
sists of the appearance of various emitters homogeneously
distributed in the transverse plane with the number of
overlapping strings varying for 1 to N with a certain prob-
ability. One can model this physical situation by assuming
a fixed number M of emitters (“cells”), each one of them
(emitter α) equivalent to a certain number nα of com-
pletely overlapped strings including nα = 0, in which case
there is no emission at all. So effectively one also has a
varying number of emitters with different colors. Averag-
ing over configurations is achieved by distributing each nα

around some average value n̄α with a certain probability
Pα(nα). The homogeneous distribution of strings in the
transverse plane corresponds to equal averages: n̄α = n̄ .
One can model an inhomogeneous distribution of strings
by distributing the M emitters in the transverse plane and
choosing n̄α in accordance with the nuclear profile density.

In this model (“cell model” [11]) we have for the average
number of particles from cell α

m̄α = µ0
√

nα, m̄F,B
α = µF,B

0
√

nα . (31)

If we assume that the cell probabilities ρα(m) are Pois-
sonian, then correlations can be calculated using our for-
mulas of Sect. 2 in exactly the same way as before. For
the final averaging over configurations (that is over all nα,
α = 1, . . . , M) we have taken the probabilities Pα(nα) to
be also Poissonian with a common average value n̄ = η to
correspond to the previous geometrical picture. Note that
in this model the average value of strings is 〈N〉 = Mη.

The results of calculations of Fµ−µ(x) in this model for
〈N〉 = 50 and various η show that they are very close to
both previous models, especially at relatively large η when
they are nearly identical to those in the ministring picture.
The slopes of Fµ−µ(x) at x = 1 for the cell model are
shown in Fig. 1 with a short-dashed line. So, as expected,
this simplified model imitates the geometrical model of
ministrings almost ideally. With that, it is much simpler: its
realization by Monte Carlo simulations requires computer
time more than an order of magnitude smaller than for
ministrings with equal 〈N〉. Apart from this, the model
admits some analytic estimates for small or large values of
η, which reveal basic properties of the correlations in these
asymptotical regions (see Appendix B.).
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4 Correlations between average transverse
momentum and multiplicities

According to (17), to calculate the 〈p2
T〉–µ correlations we

have to know the averages p̄2
c in the backward window

in a given configuration. For the Poissonian emitters they
can be calculated via (21) if one knows these averages
for a given emitter α (see (2)). The concrete values of p2

α

depend on the scenario of string interaction. They were
analyzed in [8, 9] from where we borrow their expressions
presented below.

Both for the ministring and cell scenarios the value of
p2

α for the individual emitter are determined only by the
number of strings in the overlap or cell. For ministrings

p2
ni = p2

0
√

n (32)

and for the cell model

p2
α = p2

0
√

nα . (33)

For the cluster scenario p2
α depends on the color density

inside the cluster and thus also depends on its area Sα:

p2
α = p2

0

√
nασ0

Sα
. (34)

In these formulas p2
0 is the average transverse momentum

squared for the initial string.
With these expressions for p2

α we calculated 〈p2
B〉mF

according to (17) by Monte Carlo simulations for the
three scenarios considered: ministrings, clusters and cells.
We studied

Fp2−µ =
〈p2

B〉mF

〈p2
B〉 − 1 , (35)

considered as a function of the same variable x, (28). As be-
fore we took 〈N〉 = 25 and 50 and η in the region 0.5÷3. We
found that Fp2−µ(x) again exhibits a satisfactory scaling
property: it as a result is found to be practically indepen-
dent of 〈N〉. As for µ–µ correlations, Fp2−µ(x) is found to
be a nearly linearly rising function of x, crossing zero at
x = 1. However, contrary to µ–µ correlations, the slopes
for p2–µ correlations rise with η. The slopes of Fp2−µ(x)
at x = 1,

bp2−µ =
(

dFp2−µ(x)
dx

)
x=1

,

are shown in Fig. 3 for the three studied scenarios with
the homogeneous distribution of strings. One observes that
the overlap and cluster scenarios again lead to practically
identical results. The cell model imitates these two physical
scenarios quite satisfactory at large η > 2÷2.5. At smaller
η its slopes lie 30 ÷ 40% below.

In contrast to the µ–µ case the slopes are now non-
monotonic in η. They vanish at η → 0, which corresponds
to the absence of p2–µ correlations for independent strings,
have a broad maximum in the region of η÷1.5–2.5 and then
slowly diminish, the difference between the three scenarios
becoming quite small. It is remarkable that at high η the
slopes for the p2–µ correlations become nearly equal to the
slopes in the µ–µ correlations (cf. Fig. 1). This fact can be
analytically derived in the cell scenario (see Appendix B).

One might be tempted to relate the maximum in the
p2–µ slopes with the percolation phase transition which
takes place in the same region of η. We do not see any ar-
guments that may support this idea. In fact the qualitative
behavior of bp2−µ is the same in all three scenarios, and
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there is no phase transition in the cell scenario. Note that
a similar behavior has been observed for dynamical trans-
verse momentum fluctuations at RHIC, which increase at
low number of participants and decrease for their number
being greater than 200 [12]. This behavior can be explained
in the framework of percolating strings [13], but to what
extent it is related to the percolation phase transition is
not clear.

In Fig. 4 we compare the slopes in the overlap scenario
for the homogeneous distribution of strings and the same
realistic one, as in Fig. 2. Again the difference is seen to
be of little importance.

It has to be stressed that absolute values of the slopes
are not too small, of the order of 0.1 in a wide range of
η. Such slopes can hopefully be measured experimentally.
There existence would be a clear signature of string fusion.

5 pB–pF correlations

The last type of correlations we shall study are those be-
tween transverse momenta of particles emitted in the for-
ward and backward rapidity windows. They can be mea-
sured by the average transverse momenta squared of parti-
cles in the backward rapidity window at an observed trans-
verse momentum in the forward rapidity window, (18). To
calculate this in our color string model we have to know
the particle spectrum wα(p) for an individual emitter. This
spectrum has to be chosen to lead to the averages (2), which
have been discussed for each of the models for string inter-
action in the previous section. We choose the distribution

wα(p) in the form prompted by the standard fit to the
experimental spectrum for the proton target [14]

wα(p) =
(κ − 1)(κ − 2)

2πp2
α

(
pα

p + pα

)κ

. (36)

Here p2
α is given by (32)–(34) for the three models of string

interaction considered, pα =
√

p2
α,

κ = 19.7 − 0.86 lnE, p2
0 =

24
(κ − 3)(κ − 4)

(GeV/c)2 ,

(37)
and E is the CM energy in GeV.

With this distribution we calculated (18) for the three
considered scenarios averaging over configurations by
Monte Carlo simulations with a different average num-
ber of strings 〈N〉 = 25 and 50. Calculations show that for
these correlations the scaling function independent of 〈N〉
turns out to be

Fp−p = 〈N〉
( 〈p2

B〉pF

〈p2
B〉 − 1

)
. (38)

As argument it is convenient to choose the dimensionless

y =
pF√〈p2

F〉 . (39)

We have calculated Fp−p(y) for different η. In all cases
Fp−p(y) is found to be a linearly rising function of y crossing
zero at y = 1. The slopes of Fp−p(y) at y = 1,

bp−p =
(

dFp−p(y)
dy

)
y=1

,
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are shown in Fig. 5 as functions of η for the three studied
models. They rise with η similarly to the slopes in p2–µ
correlations. Again overlaps and clusters lead to practically
identical results. Their imitation by cells gives rather sat-
isfactory results, especially at η > 2, where the cell slopes
lie higher than those from the other two scenarios by some
10%. At lower η this difference rises to 30 ÷ 40%.

Note that due to the presence of the factor 〈N〉 in (38)
the final slopes for p–p correlations are given by bp−p/〈N〉.
At η ∼ 1 our calculated bp−p are ∼ 0.15. So, for realistic
collisions with high 〈N〉 the magnitude of the correlations
is extremely small, which excludes their experimental ob-
servation. As follows from our results, to see correlations
of the order of 1% one should have 〈N〉 ∼ 15, which is
unrealistic for η > 1.

6 Conclusions

This work was primarily motivated by the search of ap-
propriate observables which could shed light on the details
of the dynamics of color string fusion conjectured to oc-
cur in heavy ion collisions. The results of our study show
that pair correlations are unfortunately rather insensitive
to these details. Moreover they demonstrate that even the
geometric picture of string fusion and percolation is not
very essential for the found correlations. A very simpli-
fied picture, which only takes into account the existence
of many emitters with different colors, leads to results not
very different from the realistic geometrical overlapping of
color strings. So the correlations basically reflect only the
possibility of spots with a higher color field in the colliding

nuclei and strongly depend only on their spatial density
characterized by the parameter η.

From a certain point of view this is a positive aspect,
since predictions for the correlations do not vary with spe-
cific assumptions made about the string fusion dynamics.
The behavior of the correlations with η emerges as a clear
signature for the basic new phenomenon characteristic for
string fusion: the formation of emitters with higher color
density. Both µ–µ and p2–µ correlations look quite promis-
ing from this point of view. In particular, p2–µ correlations
arise totally due to string fusion in our picture; they are
absent with independent strings. However, as mentioned
in the introduction, this is only true for particles produced
strictly in the central region, since in the fragmentation
regions obvious p2–µ correlations are caused by the accu-
mulation of the string ends momenta. So, to see the effect
of string fusion one should choose both rapidity windows
as far as possible from the rapidity limits. As to p–p cor-
relations, our calculations have shown that they diminish
with the number of strings and appear to be negligible for
realistic heavy ion collisions except at the highly periph-
eral collisions.

Our calculations have been made both for a homoge-
neous distribution of strings in the transverse interaction
plane and for a realistic distribution, taking into account
the varying string density as a function of the impact pa-
rameter. Our results show that the change introduced by
a realistic geometry is of no practical importance.
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A Averages with the Poisson distribution

We start with ρc(m) determined by (8). Presenting the
Kronecker symbol as a contour integral around the origin
we find

ρc(m) =
∑

{mα}

∫
dz

2πiz
z−m+

∑
α mα

∏
α

ρα(mα) . (40)

We have ∑
mα

zmαP (mα) = e(z−1)m̄α , (41)

so that

ρc(m) =
∫

dz

2πzm+1 e(z−1)m̄c = e−m̄c
m̄m

c

m!
. (42)

So we find (20).
Now take the average (7). We represent it by

p̄2
c =

∑
m

1
m

∑
{mα}

∏
α

ρα(mα)δm,
∑

α mα

∑
α

mαp2
α . (43)

The internal sum over all mα at their sum fixed can be
represented in the same way as (40):

X ≡
∑

{mα}

∫
dz

2πiz
z−m+

∑
α mα

∏
α

ρα(mα)
∑
α

mαp2
α .

(44)
Take some particular term in the last sum, say α = 1 Then
the sums over all mα, α = 2, 3, . . . , M will give the same
factor, (41). The sum over m1 will however contain an
extra factor m1:

∑
m1

zm1m1P (m1) = z
d
dz

e(z−1)m̄1 = zm̄1e(z−1)m̄1 . (45)

So we find

X =
∑
α

m̄αp2
αe−m̄c

∫
dz

zm1
ezm̄c =

m

m̄c
ρc(m)

∑
α

m̄αp2
α ,

(46)
where ρc(m) is given by (20). Putting this into (43) we find
that the factor m in (46) cancels the denominator in (43).
Using then

∑
m

ρ(m) = 1

we find (21).
The derivation of (22) is done in exactly the same way.

B Analytic estimates in the cell scenario

As mentioned, the cell scenario admits explicit analytic
estimates [11] valid in the limit of large or small values
of η.

Estimates at large η are based on the asymptotic equiv-
alence of the discrete Poisson distribution and continuous
Gaussian distribution,

Pn̄(n) ∼ Gn̄(n) =
1√
2πn̄

e− (n−n̄)2

2n̄ , (47)

valid in the limit n̄ >> 1.
Let us first study the simplest case of independent

strings (without fusion). Then (31) and (33) are changed to

m̄α = µ0nα, p2
α = p2

0 (48)

and similarly for averages in the two rapidity windows. To
simplify in this appendix we shall take µF

0 = µB
0 and denote

this common multiplicity by µ0. From the second of (48) it
follows that there will be no p2–µ correlations, as expected.
The configuration averages m̄F,B

c = µ0
∑

α nα = µ0Nc will
depend only on the total number of strings Nc in a given
configuration. Averaging over configuration will be reduced
to averaging over the number of strings in different config-
urations. If the number of strings in each cell is distributed
according to the Poisson distribution with average η then
the total number of strings will also be distributed accord-
ing to the Poisson distribution with the average Mη (see
Appendix A). So at fixed η the overall average number of
strings is related to M by

〈N〉 = Mη . (49)

Thus, substituting the two Poisson distributions by
Gaussians we find from (16)

〈mB〉mF = µ0

∫ ∞
0 NdN N−1/2e−φ(N,mF)∫ ∞
0 dN N−1/2e−φ(N,mF)

, (50)

where

φ(N, mF) =
(N − 〈N〉)2

2〈N〉 +
(mF − µ0N)2

2µ0N
. (51)

We estimate the two integrals by the saddle point method.
Then we find

〈mB〉mF = µ0N0(mF) , (52)

where N0 is the solution of the equation dφ/dN = 0. In
terms of the scaling quantities

x =
mF

〈mF〉 , z =
N

〈N〉 , (53)

the equation for the saddle point takes the form

z3 − z2 =
1
2
µ0(x2 − z2) . (54)
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Solving this equation for z0(x) one can find the function
〈mB〉mF(mF) at all mF. The correlation coefficient bµ−µ

can however be determined explicitly from (54):

bµ−µ =
(

dz

dx

)
x=1

=
µ0

µ0 + 1
. (55)

Taking µ0 = 1 we have bµ=µ = 0.5 in full agreement with
the limit of curves shown in Fig. 1 at η → 0, which corre-
sponds to independent strings.

Now we pass to the physically more interesting case
when strings fuse, which in the cell scenario corresponds
to (31) and (33). Introducing the quantity for a given con-
figuration

rc =
∑
α

√
nα , (56)

we find
m̄c = µ0rc, p̄2

c = p2
0
Nc

rc
, (57)

so that

〈mB〉mF = µ0
〈rcPµ0rc(mf )〉
〈Pµ0rc(mf )〉 (58)

and

〈p2
B〉mF = p2

0
〈(Nc/rc)Pµ0rc(mf )〉

〈Pµ0rc(mf )〉 . (59)

The average is taken over the product of Poisson distribu-
tions in nα each with the average η.

We consider η >> 1 and substitute all Poisson distri-
butions with Gaussian ones to get

〈mB〉mF = µ0

∫ ∞
0

∏
α dnαrcr

−1/2
c e−φ(nα,mF)

∫ ∞
0

∏
α dnαr

−1/2
c e−φ(nα,mF)

(60)

and

〈p2
B〉mF = p2

0

∫ ∞
0

∏
α dnα(Nc/rc)r

−1/2
c e−φ(nα,mF)

∫ ∞
0

∏
α dnαr

−1/2
c e−φ(nα,mF)

, (61)

where

φ(nα, mF) =
∑
α

(nα − η)2

2η
+

(mF − µ0rc)2

2µ0rc
. (62)

In the saddle point approximation we find

〈mB〉mF = µ0r0, 〈p2
B〉mF = p2

0
N0

r0
, (63)

where N0 and r0 are values of Nc and rc at the saddle
point defined by the equations

∂φ(nα, mF)
∂nα

= 0, α = 1, . . . , M . (64)

Introducing the scaled variables

x =
mF

〈mF〉 , zα =
√

nα

η
, (65)

and a constant involving η,

a =
µ0

4
√

η
, (66)

we can write the saddle point equations in the form

z3
α − zα = a

(
x2 M2η

r2
c

− 1
)

, α = 1, . . . , M . (67)
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In terms of zα here rc =
√

η
∑

α zα. Due to the symme-
try in α obviously for the solution zα = z z satisfies the
single equation

z3 − z = a

(
x2

z2 − 1
)

. (68)

This equation defines z = z(x), in terms of which one finds

Fµ−µ(x) = Fp2−µ = z(x) − 1 . (69)

So at large values of η both µ–µ and p2–µ correlations are
described by the same scaling function of x.

At x = 1 (68) possesses an obvious trivial solution:

x = 1, z = 1, r0 = M
√

η, N0 = 〈N〉 = µ0M . (70)

This is sufficient to calculate the (identical) correlation
coefficients for both µ–µ and p2–µ correlations:

bµ−µ = bp2−µ =
µ0

µ0 + 4
√

η
. (71)

It slowly falls with η. Of course one should have in mind that
these are only asymptotic estimates, valid at sufficiently
high η. To see their validity region we present in Fig. 6
the slopes b in µ–µ and p2–µ correlations as functions of
η with µ0 = 1 calculated by Monte Carlo simulations,
together with the common asymptotic curve (71). As one
observes, the asymptotic curve gets more or less close to
the exact ones starting from η > 4–5. These are very high
values from the physical point of view, attainable only at
energies in the multi-TeV region for the heaviest nuclei and
central collisions.
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